TOTAL CO-INDEPENDENT DOMINATION OF JUMP GRAPH
نویسندگان
چکیده
منابع مشابه
Total Co-Independent Domination in Graphs
A set D of vertices in a graph G is a dominating set if every vertex in V −D is adjacent to some vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A dominating set D of a graph G is total dominating set if the induced subgraph 〈D〉 has no isolated vertices. In this paper, we introduce the total co-independent domination in graphs, exact value for some s...
متن کاملDOMINATION NUMBER OF TOTAL GRAPH OF MODULE
Let $R$ be a commutative ring and $M$ be an $R$-module with $T(M)$ as subset, the set of torsion elements. The total graph of the module denoted by $T(Gamma(M))$, is the (undirected) graph with all elements of $M$ as vertices, and for distinct elements $n,m in M$, the vertices $n$ and $m$ are adjacent if and only if $n+m in T(M)$. In this paper we study the domination number of $T(Gamma(M))$ a...
متن کاملdomination number of total graph of module
let $r$ be a commutative ring and $m$ be an $r$-module with $t(m)$ as subset, the set of torsion elements. the total graph of the module denoted by $t(gamma(m))$, is the (undirected) graph with all elements of $m$ as vertices, and for distinct elements $n,m in m$, the vertices $n$ and $m$ are adjacent if and only if $n+m in t(m)$. in this paper we study the domination number of $t(ga...
متن کاملTotal domination multisubdivision number of a graph
The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt(G) of a graph G and we show that for any connected graph G of order at least two, msdγt(G) ≤ 3. We show that...
متن کاملNote: Simultaneous Graph Parameters: Factor Domination and Factor Total Domination
Let F1, F2, . . . , Fk be graphs with the same vertex set V . A subset S ⊆ V is a factor dominating set if in every Fi every vertex not in S is adjacent to a vertex in S, and a factor total dominating set if in every Fi every vertex in V is adjacent to a vertex in S. The cardinality of a smallest such set is the factor (total) domination number. In this note we investigate bounds on the factor ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2016
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v110i1.4